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Abstract

This paper is concerned with the effect of parametric uncertainty upon the response of mechanical
systems. Two uncertainty propagation techniques are employed and compared against a benchmark based
upon randomly scanning input parameter ranges. The first technique, complex interval analysis, is
computationally very efficient but suffers from the issue of dependency which may result in large
overestimation of the system response. The second technique, namely complex affine analysis, is presented
here for the first time and it keeps track of variable dependencies throughout the calculation thus limiting
overestimation, albeit at some computational expense. The methods are demonstrated on the problem of
calculation of the frequency response functions of a simple lumped mass system with uncertain parameters
for purposes of transparency of the presented ideas, although these ideas are equally applicable to more
complex systems. It transpired that the complex affine analysis performed significantly better than its
interval counterpart.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

It is clearly desirable to know the full range of responses which may be exhibited by an
engineering structure; this desire becomes a necessity in safety-critical situations. Even when a
suitable numerical model may be developed, the issue of uncertainty can make the task of
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evaluating the complete range of possible responses extremely difficult and/or time-consuming.
Uncertainty arises in all engineering situations through incomplete knowledge of geometric and
material properties, structural loading and environmental conditions, to name but a few.

Traditionally, the approach has been to run the model a large number of times with the input
parameters randomly drawn from their respective ranges. The resulting ranges for the output
variables of interest may then be ascertained. There are two main problems with such an
approach. The first problem is that an extremely large number of model runs are required for
more than a few uncertain parameters. This number grows exponentially as the number of
uncertain parameters increases. In any but the simplest numerical model this will become
prohibitively time-consuming. The second problem is that this approach does not concentrate on
the extreme events which, in safety-critical situations, are the very events about which knowledge
is desired. Phrased differently, random scanning of the crisply bounded input parameter domains
results in underestimation of the true range of possible structural responses.

Interval analysis was designed to alleviate such problems and has naturally been extended into
the complex plane as required for many engineering problems. It requires only a single run (or at
least drastically fewer runs) of an altered version of the numerical model and returns predicted
ranges for the structural responses which are guaranteed to contain the complete range of possible
responses.

The biggest problem associated with interval analysis is the well-documented issue of
dependency whereby interval analysis is unable to account for relationships between variables and
assumes them to be independent of one another with the result, in many situations, being a
dramatic overestimation of the output parameter ranges. The problem of dependency is
exacerbated when the problem moves from the real to the complex plane. Real affine analysis was
developed over 10 years ago in order to address the issue of dependency whilst retaining simplicity
and has proved to be a very successful alternative. In this work, affine analysis is extended into the
complex plane in order to investigate whether similar success may be achieved for situations where
complex arithmetic is required.

Although the majority of investigations into structures under dynamic loading are concerned
with obtaining the eigenvalues, and possibly eigenvectors, of the structure, a much more valuable
description of the dynamic behaviour of the structure is the frequency response function (FRF)
which describes the relationship between a local excitation force applied at one location on the
structure and the resulting response at another location. Essentially, the FRF returns information
about the behaviour of the structure over a range of frequencies. In deterministic problems the
response at a particular frequency for some forcing and response locations will simply be a single
complex number, which is often plotted in terms of real and imaginary parts or in terms of
amplitude and phase. If the model parameters are prone to uncertainty however, the response at a
particular frequency will then be a range of complex numbers which, when combined with all
other discrete frequencies in the range, result in lower and upper bounds on the components of the
FRF: again, these components may be real and imaginary or amplitude and phase.

There have been previous attempts to calculate bounds on FRFs for models with uncertain
parameters which are guaranteed to be conservative. Dessombz et al. [1] used an iterative
algorithm based around interval arithmetic to calculate guaranteed FRFs for several mechanical
systems. The FRF bounds were tight to the true solution but, although requiring significantly less
operations than the random scanning benchmark, the technique still required a large number of
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operations even for relatively simple systems. In his thesis [2], Moens developed a finite element
FRF analysis technique based around interval arithmetic by considering a set translation of the
modal superposition procedure. Due to dependency problems, interval arithmetic had to be
substituted by a time-consuming optimisation approach to calculate the modal parameter ranges.
Interval arithmetic was then employed in the subsequent stages of the procedure with attempts
being made to limit the effects of dependency where possible. Again, the results were impressive
for the structures under consideration but it was acknowledged by the author that the
optimisation ‘“‘forms the numerically most expensive part of the procedure”.

There are alternative approaches which may be applicable to FRF analysis for uncertain
structures but do not return guaranteed solutions, without an optimisation stage. Hanss [3]
developed the transformation method, which is essentially an extension of Dong and Shah’s
vertex method for fuzzy numbers [4] whilst Wood et al. [5] presented an enhancement to Dong
and Wong’s Fuzzy Weighted Average (FWA) algorithm [6] to consider non-monotonic functions.

The aim of this paper is to present an approach to FRF analysis for structures with uncertain
parameters based around a complex affine arithmetic framework. It is anticipated that the affine
approach will avoid many of the dependency problems associated with interval arithmetic without
having to resort to computationally expensive optimisation algorithms. In order to illustrate the
ideas, the effect of uncertain parameters upon the frequency response functions of a two degree-
of-freedom system is investigated. As the system is relatively simple, a discussion of how the ideas
may be extended to more complex systems is included towards the end of the paper.

The layout of the paper is as follows. Sections 2 and 3 give details of real and complex interval
analysis, respectively. Sections 4 and 5 do similar for real and complex affine analysis. Section 5
spends some time comparing the results of several basic operations in interval and affine
arithmetic. Section 6 benchmarks the two techniques against a standard approach for the two-
degree-of-freedom system. The paper concludes with some discussion in Section 7.

2. Interval analysis

Although there was some previous work in the area, it was the early work of Moore, [7], where
implementation of interval arithmetic on digital computers was discussed, and [8], where the
function bounding properties of intervals were considered, that seems to have been the
springboard for much of the subsequent research in interval analysis. This early work was
expanded and collected in Moore’s excellent monograph [9], the first entirely devoted to interval
analysis, which has since be updated [10].

One of the first hurdles with interval analysis concerns the multitude of notations which have
been employed in the past. In order to address this issue a standardised notation has been
proposed [11] and will be used here.

An interval number, X, is an ordered pair of real numbers, [x,X], with x <X (x is termed the
lower bound or infimum and X the upper bound or supremum). If x = X this is variously termed a
degenerate, weak, thin or point interval and is equivalent to a real number. The interval number, x,
is also a set of real numbers, x, such that x <x<X. This may all be written

x={xeR|x<x<x}. (1)
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It is a straightforward matter to incorporate the idea of interval vectors and matrices. An interval
vector or box of dimension n, x is defined as

x={xeR"|x<x<X}, (2)

where x and X are real column vectors of length n. Note that the inequality x <X means that each
component of x is less than or equal to its counterpart in X. It should also be noted that there is no
notational difference between interval numbers and interval vectors; both use bold, lowercase
letters and interval numbers are simply treated as one-dimensional interval vectors.

There is a change in notation for interval matrices with bold, uppercase letters being used. An
m x n interval matrix, A, is defined as

A={4eR"™" | A<A<A}. 3)

Each matrix component, A,. = [4,., A.],(r=1,...,mc=1,...,n), will be an interval number.
Let x and y be interval numbers such that x = [x,X] and y = [y, y]. The four basic arithmetic
operations are simply defined as

x+y=[xx]+Dry=[x+px+J] 4)
X—y:[g,f]—Q,ﬂ:[)_c—?,f—z], (5)
X Xy = [x,X] x [,¥] = [min{x y, xy,X y, Xy}, max{x y, Xy, X y, Xp'}] (6)

and, if 0¢[y,],
x/y =[x, X]/[p, 3] = [x, %] x [1/3,1/ y]. (7)

The addition and subtraction operations extend directly to interval vectors and matrices assuming
dimensional compatibility of the operands. Multiplication of two interval matrices is conducted in
the same manner as for real matrices with the exception that each component multiplication is
done using Eq. (6) and each addition using Eq. (4). The width of an interval, x, is simply X — x.

Let f(x) be a continuous unary operation on R. The interval evaluation of the function over the
interval x is

£00 = |inf (/). suptf () ®)

If the function is monotonic (e.g. exp®, or x*"*1) then the interval evaluation is straightforward. If
the function is monotonically increasing, the interval evaluation will be given by

Jx) =/ (x),/(X)] )
and for monotonically decreasing functions,
Jx) =[f(X)./(X)]. (10)

The above equations may also be used if the function is monotonic over the range of x. If a
function is not monotonic over the range of x it is perfectly acceptable to split the range into
several sub-ranges over each of which the function is monotonic then calculate the union of the
function’s sub-range evaluation. However, it is usually a trivial matter, with knowledge of a
function’s behaviour to evaluate the function range without resorting to division of the interval
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range. For example, consider f(x) = x** where 0 € x. Knowledge of the function allows the
specification of the interval evaluation of this function over x as

f(x) = [0, max(| x|, [%])*"]. (11)

Interval arithmetic has become an effective tool for obtaining guaranteed bounds on rounding
errors and the effects on a system’s output of uncertainties on the input parameters. However, the
major hurdle to wider applicability is interval arithmetic’s potential for severe overestimation of
the ranges. The reason for this overestimation is that some of the algebraic laws which are valid
for real numbers are not valid for interval numbers. Some of the laws hold in a weaker form for
interval numbers. Muhanna and Mullen [12] summed up the algebraic properties of interval
operations in two general rules:

1. Two arithmetic expressions that are equivalent in real arithmetic, are equivalent in interval
arithmetic when each variable occurs only once on each side. In this case, both sides yield the
true range of the expression (this was stated by Moore [9]).

2. If fand ¢ are two arithmetical expressions that are equivalent in real arithmetic, then the
inclusion f(x) C g(x) holds, if every variable occurs only once in f.

The first rule means that the laws of commutativity and associativity hold for interval numbers:

X+y=y+X, Xxy=y*xX (commutativity), (12)

x+y)+z=x+(y+1z), (xX*xy)xz=xx*(y*z) (associativity). (13)

The laws of additive and multiplicative cancellation and distributivity do not satisfy this first rule
and it transpires that they do not hold, in general, for interval numbers. That said, the second rule
means that the weaker laws of subcancellation and subdistributivity do hold:

0 € x —x (additive subcancellation), (14)
1 € x/x (multiplicative subcancellation), (15)
xx(y+2z) C(x*xy)+ (x*2z) (subdistributivity). (16)

The left-hand side of Eq. (16) will return the exact range of the expression whilst the right-hand
side will only return the exact range of the expression under special circumstances: if x is a real
number or if y xz>=0.

The breakdown of the distributivity and cancellation laws are examples of a wider phenomenon
relating to interval arithmetic termed dependency. The problem arises when variables occur more
than once in an interval expression and may lead to a gross overestimation of the true range,
especially in iterative processes. Interval arithmetic is not capable of recognising multiple
occurrences of the same variable and evaluates all the intervals as independent of each other.
Dependency is the most common reason for interval arithmetic being discarded as a means of
propagation of uncertainties in many situations. In some situations, the overestimation due to
dependency may be lessened or even eradicated using the following recommendations: (1)
reducing the number of occurrences of the variables via symbolic cancellation before evaluation of
the intervals, (2) rewriting polynomial expressions in nested or Horner form and (3) rewriting the
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expression in what Moore [9] termed the centred form for the particular intervals of interest. The
above recommendations are useful for specific expression types but, in most situations, there is
little that can be done to eradicate the overestimation due to the issue of dependency. Hansen [13]
stated that the endpoints of an interval evaluation of a function would only be sharp (the same as
the actual range) if they are computed using only one endpoint of each of the interval variables.
This means that, if the endpoints are tracked through a calculation, the appearance of the lower
and upper bounds of any interval variable means that the particular endpoint of the function
evaluation will not be sharp.

Dependency is the most common reason for interval arithmetic being discarded as a means of
propagation of uncertainties.

3. Complex interval analysis

Boche [14] extended the idea of interval arithmetic to the complex plane by choosing the
Cartesian representation for complex numbers. It is a relatively straightforward process. x now
represents a complex interval number X, 4 ix; where x, and x; are the real and imaginary interval
components of the complex number. The components are then assumed to be independent of one
another such that

X =[x, %] = {x, € R| x, <x, <X}, (17)
X; =[x, Xi] = {x; € R| x; <x; <X} (18)
The four basic arithmetic operations for interval complex numbers x and y are defined below
X+ Y= ([Kr’xr] + [X,,ayr]) + i([li: xl] + [Xi’ yt])
= ([El +Xr,fr +yr])+1([£l +X,~axi+?i])’ (19)

X—y= ([Er’xr] - Q,a?r]) + i([&i’ xl] - [Xi’ yl])

=(x, =¥ % —y D+ i(lx; =7, Xi — y ], (20)
Xy = (Xry, — Xiy) +1(x,y; + Xiy,) 1)
and if 0¢ (y? +y7)
X _xy" (xy, +xy) iy, — X))

; (22)

y oy Y; + i
where * signifies the complex conjugate of the complex interval. In order to ensure that division is
possible, it is necessary to define the product of a complex interval and its complex conjugate as
the intervalised version of the product of a crisp (i.e. degenerate) complex number and its complex
conjugate:

Y =y + i (23)

The above equation may seem superfluous but it is necessary, as simply substituting x, =y, and
x; = —Yy,; into Eq. (21) will not, in general, result in a zero imaginary part. When the product y,y; is
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subtracted from itself using standard interval arithmetic, the dependency problem arises in the
form of failure of the law of additive cancellation. However, the weaker law of sub-cancellation,
given in Eq. (14), does hold.

On the subject of dependency, the basic operations for complex interval arithmetic given in Egs.
(19)—(22) will now be examined for any dependency problems. First, it is assumed that the real and
imaginary components of x are independent of one another (similarly for the components of y). If
this is not the case, then there will be issues of dependency for every complex interval operation, as
the complex interval framework is not designed to deal with such a situation. This will be
investigated in Section 5.

So, assuming that the real and imaginary components of x and y are independent, examination
of Egs. (19) and (20) shows that there are no dependency problems with regard to the complex
interval addition and subtraction operations. For both operations, the lower and upper bounds of
the real part are calculated using only one of the bounds from x, and one of the bounds from y,.
Similarly, for the lower and upper bounds of the imaginary part, using only one of the bounds
from x; and one of the bounds from y,. These operations satisfy the first general rule relating to
dependency, stated in the last section, which was stated in an alternative manner by Hansen [13].

A similar examination of the right-hand side of Eq. (21) shows that, although all four real and
imaginary components arise in the expressions for the real and imaginary components of the
product, no component occurs more than once in either product component. In dependency
terms, this means that the first general rule is satisfied and, therefore, the bounds on the real and
imaginary components returned by the complex interval multiplication operation will be sharp to
the true ranges of the real and imaginary components. That said, there is a dependency issue
relating to multiplication. As previously stated, the real and imaginary components of the product
are both calculated from the same four real and imaginary components and, therefore, there will
be a relationship between the components of the product. This is best illustrated with a numerical
example.

Fig. 1 shows the true solution set of the multiplication of ([3, 7] +i[2,4]) by ([9, 11] —i[2,4]) as
the area within the dashed line. The results of the interval arithmetic multiplication are shown as a
solid box, ([31, 93] + i[—10, 38]), which, as expected, gives sharp bounds for the real and imaginary
components. However, complex interval multiplication is not able to represent the dependency
which arises between the real and imaginary components. For a single interval multiplication the
lack of dependency information between the real and imaginary parts is unlikely to cause
significant problems. The issue of greater importance is the effect of this assumption of
independence if subsequent operations are performed using this variable.

The final of the four basic operations was division of two complex interval numbers. As stated
previously, it is essential that the product of a complex interval and its complex conjugate be
calculated as the sum of the interval’s real component squared and its imaginary component
squared. Examination of Eq. (22) shows that y, and y; occur in both the numerator and
denominator of both the real and imaginary components of the complex interval division. This
multiple occurrence of variables is not recognised within the complex interval framework
resulting, in general, in an overestimation of the true range for the real and imaginary
components. Again, this is best illustrated with a numerical example. Consider the division of
([3,7]1 +1[2,4]) by ([9, 11] — i[2,4]). Fig. 2 shows the true solution set as the area within the dashed
line and the complex interval division result as the considerably larger solid-lined box,
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Fig. 1. Complex interval multiplication of ([3,7] +1[2,4]) by ([9, 11] — i([2,4]) shown as solid box. True solution set
boundary shown as dashed line.
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Fig. 2. Complex interval division of ([3, 7] + i[2,4]) by ([9, 11] — i([2, 4]) shown as solid box. True solution set boundary
shown as dashed line.

([0.0803,0.8588] 4+ 1(]0.1752,0.8471]). The overestimation of the complex interval approach is
apparent.

It should be made clear that the issues of dependency arising through the use of the complex
interval arithmetic operations which have been discussed above are additional sources of
overestimation to those which are encountered in al/l interval arithmetic, as discussed in the last
section.

The extension to complex interval vectors and matrices is a straightforward matter.
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For the purpose of calculating the frequency response functions of the system of interest in
Section 6, the basic arithmetic operations are sufficient.

4. Affine analysis

Affine analysis was first introduced in 1993 by Comba and Stolfi [15] where it was applied to
computer graphics problems such as surface intersections. The basic idea of affine arithmetic is to
keep track of dependency between operands and sub-formulae whilst retaining much of the
simplicity of interval arithmetic. The result is that, in most situations, and certainly those where
multiple iterations are necessary, affine arithmetic returns tighter bounds on the computed
quantities than those obtained via interval arithmetic.

The notation which will be used in this paper is that from Comba and Stolfi’s original paper [15]
with a few, minor alterations and additions, aimed at making the proposed ideas more
transparent.

In affine arithmetic, some partially uncertain parameter, x, is represented by an affine form X,
which is a first-order polynomial:

n
x= X0 + Z Xi& + Xerré€errs (24)

i=1

where x; are known real coefficients and ¢; are symbolic variables whose values are unknown but
liec in the range [—1, 1]. Each ¢; represents one of n independent sources of uncertainty whilst the
corresponding coefficient x;, termed partial deviation, gives the magnitude of that particular
uncertainty. xo is termed the central value, for obvious reasons. The final term, Xepéerr 1S an
approximation error term which is necessary as not all operations on affine forms result in an
affine combination of the ¢;. &, is a completely new error symbol, treated as independent of all ¢;
and lying in the range [—1, 1], and x.,; is an upper bound on the absolute difference between the
true function and the affine approximation over the required range and will therefore always be
non-negative.

It is straightforward to extend the idea to vectors and matrices of affine forms. In keeping with
the notation for interval vectors and matrices, affine vectors will be specified using the same
notation as affine forms, namely lowercase letters with a hat whilst affine matrices will be specified
by uppercase letters with a hat.

It is often necessary, especially in the input and output of numerical programs and for
comparison purposes, to convert between affine forms and intervals and vice versa. This is a
straightforward process. Consider an affine form with an approximation error, as given in Eq.
(24). This may be converted into an interval number, x = [x, X] where

n

n
E:x0_2|xi|_xerr and y:xO‘i‘Z|xi|+xerr~ (25)

i=1 i=1

It should be stated that conversion from affine to interval forms results in the loss of all
information regarding the interdependencies of parameters.
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An interval number, X = [x,X], representing some quantity x may be converted into an
equivalent affine form X = xo 4+ Xpewénew Where

X+X X—X
X0 = > Xnew = 3

2

(26)

Note that the error symbol &, Wwill be distinct from all other & symbols as the interval x
contains no information regarding the source of uncertainty, only its overall width and the central
value.

In order to illustrate affine arithmetic, let X and y be affine forms with approximation errors
such that

n n
R=x0+ > Xiti + Xerrberry and P =3o+ D yEr + Verslorr,- 27
i=1 i=1
Certain arithmetic operations on real numbers (those that result in affine forms of the operands)
will result in exact affine representations when extended to the case where the operands are affine
forms whilst other operations will require the introduction of approximation terms. Examples of
operations which return exact affine representations are addition, subtraction and scalar

multiplication, addition and subtraction:

n
E=S4P=(xoEy)+ D _(Xi £yt + Xerr + YerrJeers-» (28)
i=1
n
Z=0oXxX = oXxy+ Z 0Xi€ + UXerr€err. s (29)
i=1
Z=Xxtoa=(xoExa)+ Z Xi€i + Xerr€err.» (30)

i=1

where o € R. Note that the &, term in the above equations have a z subscript to indicate that this
is a new error symbol. It should also be noted from Eq. (28) that the partial deviation associated
with the approximation error is (Xerr + ,.) irrespective of whether addition or subtraction is
being performed. The reason for this is because the assumed independent &g, and Eerr, terms are
combined in a new &, term whose partial deviation is guaranteed to contain the addition or
subtraction of the previous terms.

The above operations extend directly to affine vectors and matrices assuming dimensional
compatibility of the operands.

It is clear that most common mathematical operations may not be represented as affine
combinations of their arguments. This means that the corresponding operations on affine forms
will not result in affine combinations of the ¢. The procedure for non-affine operations is to
choose an affine function which gives a good approximation to the true function over the desired
range then an approximation error term is added which is guaranteed to contain the maximum
absolute difference between the affine function and the true function. Arguably the most common
of the non-affine operations is multiplication, z = x x y. Consider the product of affine forms X
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and p where the arguments are given in Eq. (27)

n
xii + xerrgerrx) x (yo +) e+ yerrgerry>
1

n
= i=1

=Xxy= (xo—l—

=

n
= x0¥o + Y _(X0¥; + Xi¥o)éi + X0Verrerr, + XerrVoferr,

i=1

n n
+ (zl: Xi€& + xerrgerrx> X (Zl: Yi€i + yerrgerry> > (3 1)
= 1=

where e denotes the exact expression. As stated previously, the aim is to approximate the
above expression by an affine expression, termed z% plus a new approximation error
term, Zerrerr,:

=12~ + Zerr€errs » (32)
where
Zerr = max{lz‘) - Zal} VSI: <o 5 Eny Eerrys 8erry € [_17 1] (33)

and &, lies in the range [—1, 1]. A quick, conservative affine estimate was suggested by Comba
and Stolfi [15] for multiplication of two affine forms, without approximation errors. It is a simple
matter to extend Comba and Stolfi’s expression for affine forms with approximation errors. The
affine approximation, z¢, is given by

2 =Xy + > _(X0¥; + Xi¥o)ei (34)

i=1

and the approximation error partial deviation, ze, is given by

|xi| + xerr) X (Z |)/,| +yerr> . (35)
=1 i=1

On many occasions the above estimate returns very conservative results. In Ref. [16] the author
presented two further estimates which retained information, previously ‘lost’” in Comba and
Stolfi’s approximation error. The better estimate (and the one which will shortly be adapted for
complex affine analysis) had an affine approximation, z¢, given by

1 n
a __ .
z = (.X()yo + z i=§] lei> +

and an approximation error partial deviation, ze., given by

1 n n n
Zerr = EZ |xiyi| + Z Z |(xiyj + xjyi)| + xerryerr
i=1

i=1 j=i+l
(lxol +) |xl-|) X Yerr | + [ Xerr X <|yo| +> w)] : (37)
i=1 j

i=1

14

Zerr — |x0|yerr + xerr|y0| + <

(X0y; + Xiyo)ei (36)

n
l'_

=1

+ +
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The first improvement from the standard estimate is due to the realisation that the x;y;e7 terms
arising from Eq. (31) will vary between 0 and x;y; as opposed to —x;y; and x;y;, as assumed by the
Comba and Stolfi estimate. The second improvement arises from the realisation that by summing
the x;y; and x;p; terms, as in Eq. (37), the magnitude of the contribution towards the overall
approximation error may be less than the equivalent contribution assumed in Eq. (35),
il [y ]+ x|yl

The benefits of these reductions in approximation error will be most noticeable in matrix
multiplications where the components of the matrices are affine forms with more than one
independent source of uncertainty, although improvements may be observed in many
multiplications of two affine forms.

Unlike multiplication, most other commonly used non-affine operations have only one operand
e.g. e%, X", 1/x and {/x. The two common techniques for approximating these operations are the
Chebyshev (or minimax) approximation and the min-range approximation. Both techniques,
and their associated advantages and disadvantages, were discussed in Refs. [16,17] in some
detail. In this work, only the Chebyshev approximations for the reciprocal function and the
squared function are required and as such will be the only non-affine unary operations considered
here.

The Chebyshev approximation for the operation z = 1/x over an interval range x = [a, b] (note
0¢x) is given by

Z=oaX+ ﬁ + 5gerr; = (Xo + X + xerrgerr> + ﬂ + 5861‘1‘:3 (38)
i=1
where
1 1 1 1 1 1 1
= —— =—4+—+— o=|—+——— 39
e VA TR/ 202 U@ (39)

whilst the Chebyshev approximation for the operation z = x> over an interval range x = [a, b] has

the same form as Eq. (38) with the parameters o, f and J given by

2 2

5 g (40)

5. Complex affine analysis

In the same manner as affine analysis offers an alternative to interval analysis which is able to
account for dependencies between real variables, in this section will be presented an alternative to
complex interval analysis based around the framework of complex affine arithmetic.

There are a few possible approaches to the extension of affine arithmetic to the complex plane.
The one proposed here allows for dependency between the real and imaginary components of a
particular variable to be represented, something not possible using complex interval arithmetic.
Separate real and imaginary approximation errors will be calculated. The thinking behind this
decision is based upon several reasons: (1) the errors are essentially ‘lost’ to the calculation, and
therefore representation of dependencies between real and imaginary errors is of little value, (2) it
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is possible to represent a relatively large real error with a small imaginary error (and vice versa),
something which would not be possible with a single error term and (3) easy visualisation of
complex affine variables. Overall, it is expected that this decision to use separate real and
imaginary errors will result in tighter bounds and more straightforward analysis than if a single
error term were employed.

So, a complex affine approximation, with error terms, for some uncertain complex parameter,
x, is given by (cf. Eq. (24) for a real parameter)

n
X = X0+ E Xi& + Xreal€real + 1Ximag€imag> (41)
i=1

where xo and x; are now known complex coefficients and ¢ are symbolic variables whose
values are unknown but lie in the range [—1,1]. As in the previous section, each of the &; re-
presents one of n independent sources of uncertainty whilst the corresponding coefficient Xx;,
termed partial deviation, now gives the magnitude of that particular uncertainty in the real and
imaginary directions. xy, the central value, is now complex. Both Xcai and Ximae are real and
positive. &rea1 and &imqg represent the real and imaginary approximation errors respectively and are
completely new error symbols, treated as independent of all ¢; and lying in the range [—1, 1]. Xear 18
the upper bound on the absolute difference between the real part of the true function and the real
part of the affine approximation over the required range and will therefore always be non-
negative. Xjmag 1s the upper bound on the absolute difference between the imaginary parts and
will therefore also be non-negative. Extension to complex affine vectors and matrices is
straightforward.

As with real interval numbers and affine forms, it is often necessary to convert between complex
affine forms and complex intervals and vice versa. This is straightforward. Consider a
complex affine form with an approximation error, as given in Eq. (41). This may be converted
to a complex interval number x = x, + ix; = [x,, X,] + i[x;, X;] where

n

n
X, = RC(X()) - Z |Re(xi)| — Xreal, Xr = RC(XO) + Z |Re(xi)| + Xreal,

i=1 i=1

n n
x; = 1Im(xo) = > [Im(x)| — Ximag  and % = Im(x) + Y _ [IM(x;)| + Ximag- (42)
i=1 j

i=1

Whilst conversion from real affine forms to real interval numbers resulted in the loss of all
information regarding the interdependencies between parameters, conversion between complex
affine forms and complex interval numbers potentially results in further loss of information. This
loss is due to the assumption of independence of the real and imaginary components in complex
interval analysis whereas dependency between the components is permissible in complex affine
analysis. This is best illustrated by the example shown in Fig. 3. The complex affine number
X = (104 51) + (3 + 2i)e; + (—1 4+ 1)&2 + 2&rcal + i€imag 15 the solid-lined convex hull whilst the
dotted line shows the conversion to the complex interval number [4, 16] + i[1, 9] whose bounds are
calculated using Eq. (42). The loss of information is apparent.

A complex interval number, x = x, +ix; = [x,, X,] + i[x;,X;] , representing some quantity
x may be converted into an equivalent complex affine form X = X + Xnew, new; + Xnew,€new,
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Fig. 3. Comparison of complex affine form (solid line) with complex interval conversion (dotted line).

where

(x, + X)) +i(x; + X;) Xr — X, i(xi — x;)
X0 = B 5 xnewl = B 5 xneW2 = #

(43)

Note that, as X, the complex interval number, represents a rectangle in the complex plane, it is
necessary to introduce two new error symbols to represent the same rectangle in terms of a
complex affine form. These error symbols, énew, and épew,, Will be distinct from all other ¢ symbols.
There is no loss of information, or overestimation, when converting from a complex interval to a
complex affine form. However, consider the effect of pre-converting the complex interval number
x = [4,16] +i[1,9] to a complex affine form. Using Eq. (43) gives X = (10 + 5i) + 6¢new; + 4ienew, -
This may be compared to the complex affine form depicted as the convex hull in Fig. 3. The
interval rectangle will be converted into an overlying affine rectangle as opposed to the convex
hull from which the interval rectangle was initially converted.

As with real affine arithmetic, there are certain arithmetic operations in complex affine
arithmetic which have exact affine representations whilst others require approximations. Let X
and y be complex affine forms with approximation errors such that

n n

X = Xo + Xi& + Xreal€realy + iximaggimag)C and J’; =)o + Zyigi + yrealgrealy + iyimaggimagy,

i=1 i=1

(44)

where the central values xo and y, and the partial deviations x; and y; are complex-valued. The
error terms Xreal, Ximag> Vreal and Vimag 1€ all real-valued.

The same operations which have exact affine representations for real affine forms
have exact representations for complex affine forms. Addition and subtraction of
two complex affine forms and multiplication, addition and subtraction of a complex scalar are
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given by
=%+

n
= (%0 £ 3o) + >_(x1 £ )& + (Xreal + Vrea)éreal. + I(Ximag + Vimag)imag, (45)

i=1

Z=uaXx
n

= axo + ox;e; + (|otreat | Xreal + |Ofimag|ximag)8realz + i(locrealbcimag + |Ofimag|xreal)3imagzp (46)

i=1

n
I=Xta= (XO +to)+ z Xi& + Xrealéreal, + iXimaggimagza 47)

i=1
where o € C. Note that the &, and &mae terms in the above equations have a z subscript to indicate
that these are new error symbols. In a similar manner to the real affine operations, the partial
deviations associated with the real and imaginary approximation errors in Eq. (45) are (Xreal + Vyeal)
and (Ximag + Vimag)» Tespectively, irrespective of whether addition or subtraction is being performed.
This is because the assumed independent &y, and épeq), terms are combined in a NEW &real, term
whose partial deviation is guaranteed to contain the addition or subtraction of the previous terms.
The same is true for the imaginary approximation errors. A similar case arises for the approximation
errors in Eq. (46) with the worst-case situation being assumed in order to guarantee conservatism.

The above operations extend directly to complex affine vectors and matrices assuming
dimensional compatibility of the operands.

As was the case with the arithmetic for real affine forms, most operations on complex affine
forms may not be represented by an affine combination of the ¢ and it becomes necessary to
choose an affine function which is a good approximation to the actual function over the range of
interest to which is added an approximation error which gives guaranteed containment of the true
function. Again, the most common of the non-affine operations is, arguably, multiplication,
z = x x y. Consider the product of affine forms X and y where the arguments are given in Eq. (44):

=Xxyp

i=1 i=1

n n
= (Xo + § Xi& + Xreal€realy + iximaggimagx> X (yo + g Vi€i + yrealgrealy + iyjmaggimagy)

n
= XoJo + E (XOyi + xiyo)gi + x()yrealgrealy + XrealVoéreal, + iXO.yimaggimalgy + iximagy()girnagx
i=1

n n
+ ( g Xi€& + XrealErealy + iximaggimagx> X ( § Yi€i + yrealgrealy + iyhnaggimagy) 5 (48)
i=1 i=1

where e denotes the exact expression. The aim is to approximate the above expression by an affine
expression, termed z¢ plus new real and imaginary approximation error terms, Zreaiéreal, and

Zimagé€imag, -

A a .
Z = 2" + Zrealéreal, T 1Zimag€imag, (49)
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It is straightforward to derive a quick, conservative complex affine estimate of the form suggested
by Comba and Stolfi [15] for multiplication of two real affine forms. The affine approximation, z%,
takes the same form as Eq. (34), but the coefficients, xy, y,, x; and y;, will be complex in this case

2% = Xopy + Z(xoyi + XiYo)ei- (50)

i=1

The real and imaginary approximation error partial deviations, zre, and Zimag, are similar and
given by (cf. equation (35) for the real affine multiplication)

Zreal = |Re(x0)|yreal + xre’dl|Re(y0)| + |Im(x0)|yimag + ximag|1m(yo)|

<Z |Re(xi)| + xreal) X (Z |Re(yi)| +yreal>]

i=1 i=1

(Z |Im(xl)| + ximag) X (Z |Im(y1)| + yimag)

i=1 i=1

+

N 51)

and
Zimag = |Im(x0)|yrea1 + xrea1|1m(yO)| + |Re(x0)|yimag + ximag|Re())0)|

+ (Z Re(x,)] +xml> x (Z Im(y)| +yimag>
i=1 i=1

+ (Zum(x,-n +ximag> x <Z|Re(y,~)| +yreal>]- (52)
i=1 i=1

It is the author’s opinion that, in the vast majority of cases, the above simplistic approximation
would result in a large overestimation of the true range. The extension from the real to the
complex plane has introduced an extra dimension whereby careful ‘book-keeping’ will result in
significantly tighter bounds. The expression for the affine approximation, z%, is the same as Eq.
(36) with the only difference being that the coefficients, xy, y,, x; and y;, will be complex in this

case
1 n n
-4 — (xoyo + EZ x,-yl) + Z(xoyi + Xiyp)éi. (53)
i=1 i=1

The real and imaginary approximation error partial deviations, Zyea and zimag, are given by (cf.
Eq. (37) for the real affine multiplication)

1 n n
Zreal = EZ |Re(xiyi)| + Z Z |Re(xiyj + xjyi)| + XrealVreal + xim’dgyimag
i=1

i=1 j=i+1
+ <|Re<xo)|+Z|Re(x,-)|> X Vreal | + (|1m(xo)|+2|lm(x,->|> xyimag]
i=1 i=1
+ | Xreal X <|Re<yo)|+Z|Re(y,~)|> + | Ximag X <|Im<y0>|+2|lm<y,~>|)] (54)
i=1 i=1
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and

1 n n
Zimag = EZ |Im(x,-y,~)| + Z Z |Im(xiyj + xjyi)| + XrealVimag + Ximag)real

i=1 i=1 j=i+l
+ <|Re(xo)| +Z|Re(x,-)|> X Vimag | + (IIm(xo)I +Z|Im(x,-)|> xymﬂ]
i=1 i=1
+ | Xreal X (Ilm(yo)l +Z|Im(yi)l> + | Ximag X <IRe(yo)| +ZIRe(y,~)I>]' (55)
i=1 i=1

The expressions for z¢, zra and zim,, may appear to be complicated but they are simply an
extension of the expressions given in Egs. (36) and (37) for the real case.

It is slightly difficult to compare the complex affine arithmetic multiplication with its complex
interval arithmetic counterpart discussed in Section 3. The reason for this is that the amount of
dependency within and between the two operands has a significant bearing on the resulting affine
solution whilst it has no bearing on the resulting interval solution. In order to illustrate this point,
the numerical examples of Section 3 will be revisited. Fig. 1 showed the solution set (assuming
independence of all four operand components) of the multiplication of ([3, 7] + 1[2,4]) by ([9, 11] —
1([2,4]) and the box calculated using complex interval arithmetic. Three cases will now be
considered.

5.1. Multiplication example 1. all four real and imaginary components independent

First, let ¥ = (5 4 31) 4+ 2¢; — ig; and p = (10 — 31) + &3 + 1g4. Conversion of X and J to complex
intervals using Eq. (42) give the same values as used in the complex interval examples. Also, note
that there is no dependency between the real and imaginary components of X or p. Therefore, the
operands have the same level of independence as their interval counterparts. Using Egs. (50)—(52)
gives Z, the affine approximation of the multiplication of X and y, as

2 = (59 + 150) + (20 — 60)es + (=3 — 100z + (5 + 3i)es + (—3 + 51)64 + 3éreat, + ieimag,.  (56)

The convex hull given by the above equation is shown as a solid line in Fig. 4 whilst the dotted box
is the complex interval calculated in Section 3 and the dashed line contains the true solution set for
the multiplication of the two terms with independent real and imaginary components. Although
complex interval arithmetic returns the smallest box which contains the solution set, the complex
convex hull returned by complex affine arithmetic gives a better idea of the relationship between
the real and imaginary components of the solution.

5.2. Multiplication example 2: dependency between real and imaginary components within both
operands

The real advantage of complex affine arithmetic over complex interval arithmetic becomes more
apparent in the second example where the partial deviations are complex as opposed to real or
imaginary as in the last example. So, let X = (5+3i)+ (2 —i)¢; and p = (10 — 3i) 4+ (1 4+ 1)es.
Again, these affine forms convert to the same complex intervals as previously. On this occasion,
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Fig. 4. Complex affine multiplication of (5 4 3i) + 2¢; — ie; and (10 — 3i) + &3 + ieg shown as solid hull. True solution
set boundary shown as dashed line and complex interval box as dotted line.
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Fig. 5. Complex affine multiplication of (5 4 3i) + (2 — i)g; and (10 — 3i) + (1 + i)e; shown as solid hull. True solution
set boundary shown as dashed line and complex interval box as dotted line.

however, dependency exists between the real and imaginary components of each form, although
there is no dependency between the two forms. Using Egs. (50) to (52) gives Z, the affine
approximation of the multiplication of X and J, as

£ = (59 + 15i) + (17 — 16i); + (2 + 8i)e2 + 3ereal. + itimag, - (57)

The convex hull given by the above equation is shown as a solid line in Fig. 5 whilst the dotted box
is again the complex interval. The dashed line contains the true solution set for the multiplication
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of the two terms with dependent real and imaginary components. The advantage of complex
affine arithmetic starts to become more apparent in this example with the convex hull giving a
significantly closer fit to the true solution set than that returned by complex interval arithmetic.

5.3. Multiplication example 3: dependency between all four real and imaginary components

The final example considers the case when the partial deviations of the two affine forms are
complex and there exists a relationship between the two forms. Let X = (5 + 3i) + (2 — 1)g; and
$ = (10 = 31) + (1 + 1) (as before but with &, substituted with ¢;). Using Egs. (50)—(52) gives z,
the affine approximation of the multiplication of X and p, as

2= (60.5 + 15.51) + (19 — 8i)1 + 1.56reat, + 0.5itima, (58)

The true solution set on this occasion is simply the dashed curved line shown in Fig. 6. This is
closely bounded by the solid-lined convex hull given by Eq. (58). Due to its inability to deal with
the relationships between and within the operands, complex interval arithmetic returns the same
bounds as for the previous cases.

The final basic operation to be considered for complex affine forms is division of one form by
another. This operation may not be represented by an affine combination of the ¢;. The way that
this operation will be considered is the multiplication of the product of the numerator and the
complex conjugate of the denominator by the reciprocal of the product of the denominator and its
complex conjugate. This may be written

X Re(®) +ilm(%)  (Re(}) + ilm(X))(Re(p) — ilm(p))
7 Re(®) +ilm(p) Re(p)* + Im(p)*

AL - N 1
= (Re(x) + ilm(x))(Re(p) — ilm(p)) x Re(f/)z n Im(f/)z .

(39)
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Fig. 6. Complex affine multiplication of (5 + 3i) + (2 — i)¢; and (10 — 3i) + (1 + i)¢; shown as solid hull. True solution
set boundary shown as dashed line and complex interval box as dotted line.
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It should be noted that, if a complex affine multiplication of the denominator and its complex
conjugate were calculated using Egs. (50)—(52), the product would have a non-zero imaginary
component. It is for this reason that the product is forced to be the sum of the real part of the
denominator squared and the imaginary part squared thereby ensuring a purely real term. The
reciprocal and squared functions will be calculated using the Chebyshev approximations given in
Eqgs. (38)—(40).

In the same way as the power of complex affine multiplication was illustrated, so the same three
examples will be used to show the effect of adopting a complex affine approach to division over a
complex interval one.

5.4. Division example 1: all four real and imaginary components independent

The complex affine forms for the first case are the same as those used in the multiplication first
case, i.e. X = (5 + 31) + 2¢; — i and p = (10 — 31) + &3 + igg. So there is no dependency between
the real and imaginary components of X or j and the operands have the same level of
independence as their interval counterparts used in the complex interval division example
of Section 3 shown in Fig. 2. Using the approach detailed above gives Z, the affine approximation
of the division of X by p, as

2 =1(0.3809 + 0.41801) + (0.1858 + 0.05571)e; + (0.0279 — 0.09291)¢,
+(—0.0252 — 0.05101)e3 + (0.0498 — 0.02311)e4 + 0.0937¢ercqr. + 0.087 ligimag, - (60)
This is shown in Fig. 7 as the solid convex hull. As with the multiplication, although there is no
significant improvement in terms of the area within the hull when compared to the interval box,

the complex affine hull conveys to some extent the relationship between the real and imaginary
parts of the solution set which is illustrated as a dashed line.
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Fig. 7. Complex affine division of (5+ 3i) + 2¢; —iey by (10 — 3i) + &3 + ieg shown as solid hull. True solution set
boundary shown as dashed line and complex interval box as dotted line.
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5.5. Division example 2: dependency between real and imaginary components within both operands

The second example considers the effect of dividing x=(5+3i1))+ (2 —1)¢ by
=010 —=31)+ (1 +1)&. Using Egs. (50)—(52) and (38)—(40) gives Z, the affine approximation
of the division of X and J, as

2 = (0.3715 + 0.4141i) + (0.2105 — 0.0349i)¢; + (0.0251 — 0.0714i)> + 0.0403¢cq.
+ 0.0416icimag, (61)

The convex hull given by the above equation is shown as a solid line in Fig. § giving a much better
approximation to the true solution set (dashed line) than that offered by complex interval
arithmetic (dotted box).

5.6. Division example 3: dependency between all four real and imaginary components

Finally, let X = (5 + 3i) + (2 — i)¢; and y = (10 — 31) + (1 + i)¢;. Z, the affine approximation of
the division of X and p, is now

2 = (0.3626 + 0.4027i) + (0.2355 — 0.10630)e1 + 0.0313¢reat, + 0.0302icinmag. . (62)

The true solution set is the dashed curved line shown in Fig. 9 which may be seen to be reasonably
closely bounded by the convex hull, shown as solid line. Again, the complex interval arithmetic is
shown as a dotted box.

Now that the arithmetic operations required to perform complex affine arithmetic have been
defined and illustrated, a simple academic example will follow in the next section to illustrate the
possibilities of this new framework.
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Fig. 8. Complex affine division of (5+ 3i) + (2 —1)e; by (10 — 3i) + (1 + i)e; shown as solid hull. True solution set
boundary shown as dashed line and complex interval box as dotted line.
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Fig. 9. Complex affine division of (5 + 3i) + (2 —1i)g; by (10 — 3i) 4+ (1 + i)e; shown as solid hull. True solution set
boundary shown as dashed line and complex interval box as dotted line.

6. Frequency response functions for a two-degree-of-freedom system with uncertain parameters

The problem to be considered here is a two-degree-of-freedom (2dof) lumped mass
system as shown in Fig. 10. The masses are denoted by m; and my, the stiffnesses
by ki, k» and k3 and the viscous dampers by ¢, ¢; and c¢3. The simplicity of the system
should serve to make the subsequent analysis more transparent whilst allowing straight-
forward visualisation of the eigenvalues. A discussion of how this method may be extended to
more complicated systems and limitations of the approach will be given towards the end of this
section.

The equations of motion of the system under forced vibration may be written,

MY +CY +KY =X, (63)

Y:{yl} and X:{XI} (64)
b)) X2

with y; and y, being the displacements of masses m; and m, respectively and x; and x;, the forcing
at the masses. The mass matrix, M, damping matrix, C, and stiffness matrix, K, for the system are

given by
[nﬂ : ]
M = , C=
0 ny

where

ki+ky, —ko
—ky  ky+k;3

c1tc —C
e | and K= . (69)

—C )+ c3
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Fig. 10. Two-degree-of-freedom lumped mass system.

The frequency response functions (FRFs) of the system relate the response at some point j to a
force input at some point i and they may be obtained by probing the system with harmonic
excitations for x; and x,. The resulting FRF matrix for this system is found to be

Hy(w) Hip(w)
Hj (w) Hp(w)
(k1 + ko) +io(e; + ¢2) — mw? —ky — iwer

; (66)

—ky —iwcy (ky + k3) + iw(cr + ¢3) — myw?
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where Hj(w) is the FRF for a response at point j to an input at point 7 and o is the frequency of
vibration. The above equation may be written

Hy(w) Hip(w)
H>i(w) Hy(w)

1 (ks + k3) +io(cy + ¢3) — maw? ky 4+ iwer

= D) @

ko + 1w, (k1 + ko) +1iw(c; + ) — }”I’llc()2

where D(w) is the determinant of the matrix on the right-hand side of Eq. (66) given by

D(w) = ((k1 + k) + iw(c) + ¢2) — mo?) (ks + k3) + io(cr + ¢3) — nmaw?)
— (k> + i) (68)

Examination of Eq. (67) shows that each frequency line of each of the four FRFs is simply one
complex number divided by another. It may also noted that H>(w) = H1(w) as expected from
reciprocity.

6.1. Crisp system

A numerical example will now be considered. The system will be that shown in Fig. 10 with the
‘crisp’ system (i.e. no uncertain parameters) having parameter values as follows: m; = 1kg,
my =2kg, ¢; = I0Ns/m, ¢; =20Ns/m, ¢; = 30Ns/m, k; = 10*N/m, ky =2 x 10*N/m and
ky =3 x 10* N/m. Substituting these values into Eq. (66) yields the four FRFs for the system.
Fig. 11 shows Hj(w) for the crisp system in terms of amplitude and phase plotted between 0 and
400rad/s in steps of 0.25rad/s (this frequency range and step will also be used in the following
analyses). From this point, the FRFs will be presented in terms of real and imaginary components
as it is in this format that it was decided was best for calculation once uncertainty was introduced.
Conversion of the uncertain FRFs to amplitude and phase would clearly be possible although it is
not considered here.

Performing an eigenvalue analysis of the undamped version of this crisp system results in
eigenvalues equal to 1.3139 x 10*(rad/ s)?> and 4.1861 x 10* (rad/ s)?> which translate into
undamped natural frequencies of 114.6 and 204.6 rad/s.

6.2. Random scanning from bounded ranges

The question which will now be addressed is what happens to the FRFs when uncertainty is
introduced into the parameters. Each of the eight structural parameters were assumed uncertain
but lying within a range of £1% of their corresponding crisp values.

In order to get a benchmark for the effect of this uncertainty upon the FRFs, a benchmark
simulation was conducted. This consisted running the ‘crisp’ calculation 5000 times but with the
values of the parameters randomly drawn from the specified ranges. Uniform distributions were
assumed for all ranges in order to have better assessment of the extreme events than would be
likely with Gaussian-type distributions. It should be stated that the number of simulations was
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Fig. 11. Magnitude and phase of H;(w).

chosen rather arbitrarily: the desire was to have adequate coverage of the input parameter space
within a reasonable computation time. Towards the end of this section, a further simulation will
be conducted using a number of simulations which require a similar amount of computation time
as the complex affine analysis calculation. This should allow better comparison of the two
methods.

The frequency regions which showed the most interesting behaviour were around the two
natural frequencies of the system and therefore were the areas plotted in the following figures.
Figs. 12-17 show the effect of uncertainty upon the real and imaginary components of the three
distinct FRFs in the frequency ranges 90-140 and 180-230rad/s. The crisp FRFs are shown as
solid lines whilst the lower and upper bounds returned by the random scanning simulation are
shown as dotted lines.

6.3. Interval analysis

Analysing the system using complex interval arithmetic is simply a matter of considering
intervalised versions of Egs. (66) and (67). The equations for the three distinct interval FRFs (as
Hai(w) = Hiz(w)) are

(ky + k3) + io(ez + ¢3) — myo? (
(K + ko) + io(c; + ¢2) — myw?)((ka + k3) + io(es + ¢3) — ma?) — (ks + iwes)*

Hj(w) = 69)
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Fig. 12. Real and imaginary components of H () in frequency range 90-140 rad/s.

Kk, + iwe,
Hix(o) = . . . 2 . (70)
(k1 + ko) + io(e; + ¢2) — myeo?)((kz + k3) +1ow(cz + €3) — mw?) — (ky + iwcs)
K| +ky) +1i —m; o’
Hos(o) = (ki + k) +io(e; +¢) —mw 7

(ki + ko) + io(e; + €2) — my?)((ky + k3) + io(ea + €3) — mo?) — (ka + iwey)® (

Each of the parameters are written as a range given by the crisp value £1% of this value. This
gives the parameter ranges

m; =[0.99,1.01], m, =[1.98,2.02], ¢; =[9.9,10.1], ¢ =[19.8,20.2], ¢3=1[29.7,30.3]
ki =[0.99 x 10* 1.01 x 10%], k, =[1.98 x 10%,2.02 x 10*], k; =[2.97 x 10%,3.03 x 10%]
(72)

which are substituted into the above equations and solved using the complex interval arithmetic
operations of Egs. (19)—(23) for each value of w. The resulting lower and upper bounds of the
interval FRFs are shown in Figs. 12-17 as dashed lines.

6.4. Affine analysis

Analysis of the system using complex affine arithmetic is conducted in much the same man-
ner as for interval analysis. The equations for the three distinct affine FRFs are the same as
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Fig. 13. Real and imaginary components of H;(w) in frequency range 180-230 rad/s.
Eqgs. (69)—(71) with all interval ranges being replaced with affine forms
A1) (ky + k3) +i0(é + &) — e’ (73)
11 = ~ ~ N N N N ~ ~ N N N N ~ RN 5
(k1 + k) + i) + &) — i)k + k3) + iw(é; + &) — mnw?) — (ks + iwé)?
A ]22 +iwey
Hp@)= 2 ()
((k1 + ko) +iw(¢) 4 ¢2) — mya?)(ky + k3) + 10(¢r + ¢3) — naw?) — (ky + 10¢;)
, (k1 + ko) + i0(@) + &) — 10
Hy(w) = (75)

(k) + fea) 4 i(&1 4 &2) — i @?)((ka + k3) 4+ 10(é 4 &3) — inw?) — (ky + iwéy)?

In affine form, each of the parameters is written as a central value (equal to the crisp value) plus a
partial deviation term (equal to 1% of the crisp value). This gives the following parameter affine

forms:

m =1+ 0‘018’”1’

iy =2+ 0.026,,,,
ki =10" 4+ 10%,, k=2 x 10"+ Q2 x 10%)er,, k3 = (3 x 10%) + (3 x 10*)zz,.

& =10+40.1e.,, & =20+02,,

&5 =30+ 0.3,
(76)
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Fig. 16. Real and imaginary components of H»(w) in frequency range 90-140 rad/s.

These affine forms are substituted into the above equations which are then solved using
the complex affine arithmetic expressions given in Egs. (45)-(49), (53)—(55) and (59) (and
Eqgs. (38)(40) from the real affine analysis section). The resulting bounds of the affine FRFs are
shown in Figs. 12-17 as dot-dashed lines.

6.5. Comparison of results

Examination of the Figs. 12-17 highlights several points. Firstly, the real and imaginary
components of Hij(w), Hx(w) and Hyy(w) in the 90-140 rad/s range show similar trends. This is
the case for crisp, random scanning, interval and affine analyses.

The next point worth noting is that, in all the plots, the crisp FRF must lie within each of the
pairs of bounds. It is also the case that the random scanning bounds must lie within (or be
coincident with) the bounds returned by complex interval and affine analysis. The reason for this
is that each random scanning simulation returns an FRF which is guaranteed to be within the
solution set of all possible FRFs whilst the complex interval and complex affine analyses are
conservative and, as such, are guaranteed to return bounds which contain the solution set.

The most important point with regards to the purpose of this paper is that, in all the plots in
Figs. 12—-17, the bounds returned by complex affine arithmetic are significantly narrower than
those returned by complex interval arithmetic. Many papers, including two by the author [16,18],
have demonstrated the advantages or real affine arithmetic over real interval arithmetic, but these
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preliminary results appear to show that there is an even greater potential for improvement upon
complex interval arithmetic offered by this newly developed complex affine arithmetic. The reason
for these benefits is the very same reason for the improvement in the complex affine analysis
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examples in Section 5 over the complex interval analysis approach in Section 3, namely the ability
of affine analysis to keep track of dependencies between terms (and between the real and
imaginary components of terms) thus reducing overestimation. It should also be stated that, if the
analysis is taken one step further to calculate amplitude and phase envelopes of the FRFs, the
dependency tracking between real and imaginary components offered by complex affine analysis
will result in less conservative conversion than that which would result using complex interval
analysis.

The results returned by complex affine arithmetic in all the plots are reasonably tight to the
random scanning bounds, but these results must be put into context with respect to computational
time and, before drawing any general conclusions, with respect to the particular situation.

In the majority of situations it is not feasible to conduct a vast number of model runs in order to
ascertain the effect of input parameter uncertainty on some output parameter. In this example, a
single crisp run (calculation of three FRFs with 1600 sample lines) required 0.2s on a 1.70 GHz,
512MB RAM laptop with Pentium 4 processor. The completion of 5000 random scanning
simulations required 1351 s (22.5 min) whilst the complex interval arithmetic and complex affine
arithmetic required 17.5 and 82.8 s, respectively. So the complex affine arithmetic requires almost
five times the computational time as the complex interval arithmetic but this is easily justified by
the results. As stated previously, the choice of 5000 simulations for the random scanning
approach was rather arbitrary. A fairer comparison, in terms of computation time, of the random
scanning and complex affine analysis approaches is afforded shortly during the discussion of the
inner and outer bounds returned by affine analysis.

In many situations, where simply a reasonable approximation of output parameters is required
and computational time is not an issue, random scanning predictions will often suffice. However,
in safety-critical situations, where knowledge of all possible outcomes is essential, then a technique
which returns solutions which are guaranteed to contain all possible outcomes is clearly desirable:
this argument holds even if the computational model takes a relatively short time to run. It should
be made very clear that, as the number of uncertain parameters increases, so the number of
random scanning simulations required to return a good approximation of the true solution set
grows explosively. The reliance on the results returned by an insufficient number of simulations is
potentially disastrous. The other main driver for uncertainty propagation techniques is
computational efficiency whereby a single model run (or at least a fraction of the number of
runs required by random scanning simulation) returns output parameter information for a family
of models which lie within the parameter ranges.

6.6. Affine analysis inner and outer bounds

Affine arithmetic has two very important advantages over interval arithmetic, aside from the
ability to give significantly better bounds in many situations, which are not highlighted often
enough. The first of these is the sensitivity information which is returned by affine arithmetic in
the form of the partial deviations related to each particular source of uncertainty. It is a simple
matter to see which of the input uncertainties have a large bearing on the uncertainty of a
particular output parameter; this is not possible with interval arithmetic.

The second advantage over interval arithmetic relates to the fact that it is possible to judge the
level of conservatism of the affine analysis due to the inclusion of an approximation error term (or
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terms in the case of complex affine analysis). This means that it is possible to return inner and
outer on the lower and upper bounds of the FRFs. Consider, for example, the affine form,
Xo + Y i1 Xi€ + Xerréerr- The outer upper bound is given by xo + > i |x;| + Xerr Whilst the outer
lower bound is given by xo — > i, |x;| — Xerr. The inner upper bound is given by xo + > i |xi| —
Xerr Whilst the inner lower bound is given by xy — Zle |xi| + Xerr-

This characteristic is illustrated in Fig. 18 for H(w) in the frequency range 180-190rad/s. The
solid line in both plots represents the crisp FRF whilst the two pairs of dot-dashed lines represent
the inner and outer bounds returned by the complex affine arithmetic: the outer bounds are
marked with circles and the inner with squares. In order to provide a fairer computational time
comparison than previously, 500 random scanning simulations were conducted which took
around 80s (similar to complex affine analysis) on a 1.70 GHz, 512MB RAM laptop with
Pentium 4 processor. In Fig. 18, dotted lines represent the bounds returned by the random
scanning simulations. These lines appear to be reasonably coincident with the inner complex
affine bounds for both the real and imaginary components. This may initially cause concern at the
level of apparent overestimation returned by the outer bounds. This concern proved unfounded
when a vertex propagation calculation, comprising 256 (2%) crisp runs with the 8 input parameters
at all possible combinations of their lower and upper bounds, was conducted. The bounds
returned by the vertex propagation are represented by dashed lines which must be contained in the
solution set and, as such, may be used as an inner bound on the solution set. This approach will
rapidly become very inefficient as the number of uncertain parameters increases. Complex affine
analysis, however, offers a quick method for calculating inner and outer bounds which are
guaranteed to contain the boundaries of the solution set, regardless of the number of uncertain
parameters. On a final note, it should be stated that the 500 random scanning simulations
significantly underestimate the vertex propagation results, and therefore the true solution set. This
situation did not improve significantly when 5000 random scanning simulations were conducted
thereby reinforcing concerns expressed earlier about using such an approach in safety-critical
situations.

6.7. Extension of method to models of greater complexity

The example included in this section was purposefully simple in order to clearly illustrate the
power of complex affine arithmetic when compared to its interval counterpart. That said, the issue
of how these ideas may extend to more realistic engineering problems needs to be addressed.

It is the author’s opinion that the method would continue to offer significant benefits over
interval arithmetic if the system under consideration were a lumped mass system with up to tens of
degrees of freedom. In fact, were the system to have a greater number of lumped masses, there
would be even greater dependency effects than in the simple example. It is more likely that the
number and width of the uncertainty parameters would have a more profound effect on the
usefulness of the complex affine approach. As stated previously, tightness of the affine results to
the true solution set may be ascertained using inner and outer bounds, or simply by examining the
approximation error magnitudes. If the results are not sufficiently tight, the analysis may be
repeated with the most influential uncertain parameters (easily identified from partial deviations)
being split into several subranges. This will clearly increase computation time but should remain
significantly more efficient than the other approaches considered in the paper.
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Fig. 18. Real and imaginary components of H () in frequency range 180-190 rad/s.

Finite element models often have very large numbers of degrees of freedom and one does not
have access to analytical expression of the crisp FRFs. It should be made clear that the FRF
analysis approach via complex affine arithmetic demonstrated in the simple example will not be
applicable for models of such complexity. The approach that is currently being investigated by the
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author to incorporate the power of affine arithmetic into Finite Element methods is based around
the modal superposition procedure as used by Moens [2]. It is anticipated that the affine
arithmetic approach may be able to replace the optimisation stage for calculating the uncertain
modal parameters whilst also keeping track of dependencies in the subsequent stages of the
procedure thus resulting in computationally efficient, tight bounds on FRFs for complex
structures with many parameters. Results will be reported shortly.

It should be stated that it is unlikely that these methods will be suitable for highly nonlinear
systems. Iterative procedures will generally be required to solve such problems and care should be
taken when simply translating deterministic algorithms for direct affine counterparts. It is very
likely in such cases that the approximation errors will explode, albeit at a slower rate than would
be expected using an interval arithmetic translation. Once again, this may be avoided by simply
examining the size of the output approximation errors at each iteration.

7. Conclusions

This paper presented an alternative to complex interval analysis based around an extension of
the Comba and Stolfi’s real affine arithmetic [15] to the complex plane. Comparison of basic
arithmetic operations conducted within the two frameworks illustrated the extra dimension of
improvement available through the use of complex affine arithmetic over its interval counterpart.
Whilst real affine arithmetic required there to be some relationship between operands in order to
improve upon real interval arithmetic, complex affine arithmetic is able to offer the added
advantage of describing the relationship between the real and imaginary solution components even
if there is no dependency between the operands (or even between either operand’s components).

In the more complicated situation of the frequency response functions of a 2 dof system with
uncertain parameters, the complex affine analysis performed significantly better than its interval
counterpart. That said, if the degree of assumed uncertainty were to be increased significantly, both
methods would return worse predictions, as overestimations and approximation errors would
increase considerably. This problem could be alleviated by performing several sub-analyses [16].

Affine arithmetic has three main advantages over interval arithmetic. The first is that it returns
significantly tighter bounds on the true solution set. The second is that sensitivity information is
returned by affine arithmetic relating to each independent source of uncertainty. The third
advantage is the measure of usefulness of the prediction via examination of approximation errors
which permit the calculation of inner and outer bounds between which the true solution set
boundaries must lie.

It was stated that care must be taken when considering which procedures may be amenable to
an affine translation in order to permit the concept of uncertainty into the analysis. Whereas it is
expected that low-order systems (linear and weakly nonlinear), whose crisp FRFs may be
obtained analytically, and linear finite element models may benefit from these techniques, it is not
expected that algorithms requiring large numbers of iterative operations will return useful results,
using this approach.

The possible uses for affine analysis (real and complex) fall into two camps. Firstly, those
applications where interval analysis has been disregarded as a tool for dealing with uncertainty
due its conservative nature and secondly, those applications where interval analysis is presently
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used but dependency issues, perhaps weak, exist. One example of this second type may be fuzzy
finite element analysis (e.g. [2]) which employs interval arithmetic for alpha-cuts of the
membership function. Work has recently been published regarding the use of affine arithmetic
representations of alpha-cuts for fuzzy arithmetic [18] and this will soon be extended to include
fuzzy complex arithmetic.
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